Abstract

We present measurements of the product-channel branching ratios of the reactions (i) HD+ + HD forming H2D+ + D (38.1(30)%) and HD2+ + H (61.9(30)%), (ii) HD+ + D2 forming HD2+ + D (61.4(35)%) and D3+ + H (38.6(35)%), and (iii) D2+ + HD forming HD2++ D (60.5(20)%) and D3+ + H (39.5(20)%) at collision energies Ecoll near zero, i.e., below kB × 1 K. These branching ratios are compared with branching ratios predicted using three simple models: a combinatorial model (M1), a model (M2) describing the reactions as H-, H+-, D-, and D+-transfer processes, and a statistical model (M3) that relates the reaction rate coefficients to the translational and rovibrational state densities of the HnD3–n+ + H/D (n = 0, 1, 2 or 3) product channels. The experimental data are incompatible with the predictions of models M1 and M2 and reveal that the branching ratios exhibit clear correlations with the product state densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.