Abstract

The products of the reaction of the most energetic form of hydrogen, gas phase H atoms, with ethylene, acetylene and ethane adsorbed on a Ni(1 1 1) surface at 60 K are probed. Adsorbed ethylidyne (CCH 3) is identified by high resolution electron energy loss spectroscopy to be the major product (30% yield) in all three cases. Adsorbed acetylene is a minor product (3% yield) and arises as a consequence of a dynamic equilibrium between CCH 3 and C 2H 2 in the presence of gas phase H atoms. The observation of the same product for the reaction of H atoms with all three hydrocarbons implies that CCH 3 is the most stable C 2 species in the presence of coadsorbed hydrogen. The rates of CCH 3 production are measured as a function of the time of exposure of H atoms to each hydrocarbon. A simple kinetic model treating each reaction as a pseudo-first order reaction in the hydrocarbon coverage is fit to these data. A mechanism for the formation of CCH 3 via a CHCH 2 intermediate common to all three reactants is proposed to describe this model. The observed instability of the CH 2CH 3 species relative to C 2H 4 plays a role in the formulation of this mechanism as does the observed stability of CHCH 2 species in the presence of coadsorbed hydrogen. The CH 2CH 3 and the CHCH 2 species are produced by the translational activation of ethane and the dissociative ionization of ethane and ethylene, respectively. In addition, the binding energy and the vibrational spectrum of ethane adsorbed on Ni(1 1 1) are determined and exceptionally high resolution vibrational spectra of adsorbed ethylene and acetylene are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.