Abstract

For dephosphorylation of bis(2,4-dinitrophenyl) phosphate (BDNPP) by hydroxylamine in water, pH region 4-12, the observed first-order rate constant, k(obs), initially increases as a function of pH, but is pH-independent between pH 7.2 and pH 10. The initial BDNPP cleavage by nonionic NH(2)OH (<0.2 M) involves attack by the OH group and follows first-order kinetics, but the overall initial reaction of BDNPP liberates ca. 1.7 mol of 2,4-dinitrophenoxide ion (DNP). This initial reaction generates a short-lived O-phosphorylated hydroxylamine, 2, followed by three possible reactions: (1) reaction of 2 with hydroxylamine, generating 2,4-dinitrophenyl phosphate (DNPP, 3), which subsequently forms DNP; (2) intramolecular displacement of the second DNP group and rapid decomposition of the cyclic intermediate to form phosphonohydroxylamine and eventually inorganic phosphate; (3) a novel rearrangement with intramolecular aromatic nucleophilic substitution involving a cyclic intermediate and migration of the 2,4-dinitrophenyl group from O to N. Values of k(obs) increase modestly with pH > 10, the reaction is biphasic, and the yield of DNP increases. An increase in [NH(2)OH] also increases the yield of DNP, due largely to accelerated hydrolysis of DNPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.