Abstract
The kinetics of the reactions of phenylnitroso oxide and 4-CH3O- and 4-Cl-phenylnitroso oxides with a series of substituted styrenes (4-X-C6H4-CH=CH2; X = H, CH3O, Cl, CN) in acetonitrile at 22 ± 2°C was studied using the flash photolysis technique. It was shown for 4-CH3O-C6H4NOO as an example that only the trans isomers of the nitroso oxides are involved in the reaction. There is a linear correlation between the logarithm of the rate constant and the electronic properties of the substituent in the nitroso oxide aromatic ring on the Hammett scale: ρ = 2.3 ± 0.3 (r = 0.993) for 4-CH3O-styrene ρ = 2.03 ± 0.07 (r = 0.995) for styrene, and ρ = 1.77 ± 0.05 (r = 0.9996) for 4-Cl-styrene. Both the electron-donating and electron-withdrawing substituents in the aromatic ring of styrene increase its reactivity toward a given nitroso oxide. An analysis of the products of phenyl azide photooxidation in the presence of styrene showed that the product of phenylnitroso oxide [3+2]cycloaddition to the double bond of the olefin decomposes into benzalaniline and carbonyl oxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.