Abstract

Aromatic heterocycles are a prominent feature within natural products and pharmaceuticals and considerable efforts are directed toward their synthesis and functionalization. These molecules also appear as unwanted impurities in carbon-based fuels, and processes that fragment them are of increasing interest. Early transition metal-carbon bonds show diverse reactivity toward aromatic heterocycles: researchers have reported both functionalization, relevant to synthetic efforts, and ring opening, relevant to their removal from fuels. In particular, chelating ferrocene-diamides possess unique electronic characteristics as ancillary ligands that enable a wide range of reactivity behaviors for the resulting metal complexes. In this Account, we describe our efforts to understand the reactivity of group 3 metal and uranium alkyl complexes supported by these organometallic ligands toward aromatic N-heterocycles. Two geometrically related ancillary ligands were investigated: 1,1'-ferrocenylene-diamides and pincer-type pyridine-diamides. A substrate-dependent behavior was observed. For example, all the benzyl metal complexes cleaved 1-methylimidazole. In the case of pyridines, differences in reactivity were identified: C-H activation and C-C coupling occurred with substituted pyridines, while alkyl transfer predominated with isoquinoline and chelating pyridines. The products of the C-C coupling or the alkyl-transfer reactions underwent subsequent hydrogen transfer: within the same ring for the substituted pyridines and between two different heterocycles for isoquinoline and chelating pyridines. The comparison between yttrium and lutetium benzyl complexes supported by ferrocene- or pyridine-diamide ligands indicated that similar reactions occurred for specific substrates (1-methylimidazole, 2-picoline, and isoquinoline). A broader range of reaction types and a larger substrate scope were identified, however, for the ferrocene than for the pyridine-type complexes. Based on the reactions discussed in this Account and on isolated examples drawn from the literature, we conclude that the ferrocene-diamides represent a versatile ligand framework. We propose that iron's ability to accommodate changes in the electronic density at the metal center more readily than classical supporting ligands leads to the privileged status of these organometallic ancillary ligands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call