Abstract

AbstractThe reaction of various arenediazonium o‐benzenedisulfonimides with aliphatic triorganoindium compounds is described. Surprisingly, with triethyl‐ or tributylindium we obtained N‐ethyl‐ or N‐butylanilines, respectively. This is the first case in which, at least formally, the reactive site of a diazonium salt is the nitrogen atom directly bonded to the aromatic ring. In contrast, with trimethylindium we obtained only formaldehyde (aryl)hydrazones. In order to explain the difference between trimethyl‐ and triethylindium we have proposed some reaction mechanisms, supported by detailed density functional (DFT) calculations. The possible role of diazene/hydrazone tautomerism initially assumed was discarded and therefore three mechanisms for the key step (nucleophilic addition of the trialkylindium to the N=N double bond of diazene) were studied. For the favoured mechanism there is a difference in the energy barriers of 2 kcal mol–1 between the reactions with trimethyl‐ and triethylindium. This difference is explained on the basis of the different C–In bond energies in the two organometallics and it is assumed to be enough to explain their different behaviour under the experimental conditions.(© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.