Abstract

We have combined results from several spectroscopic techniques to investigate the aerobic reactions of Rh2(AcO)4 (AcO– = CH3COO–) with l-cysteine (H2Cys) and its derivatives d-penicillamine (3,3′-dimethylcysteine, H2Pen), with steric hindrance at the thiol group, and N-acetyl-l-cysteine (H2NAC), with its amino group blocked. Previous investigations have shown that antitumor active dirhodium(II) carboxylates may irreversibly inhibit enzymes containing a thiol group at or near their active sites. Also, cysteine, the only thiol-containing proteinogenic amino acid, interacts in vivo with this class of antitumor compounds, but structural information on the products of such reactions is lacking. In the present study, the reactions of Rh2(AcO)4 and H2L were carried out in aqueous solutions at the pH of mixing (acidic) and at physiological pH, using the different mole ratios 1:2, 1:4, and 1:6, which resulted in the same products in increasing yields. Electrospray ionization mass spectrometry (ESI-MS) indicates formation of dimeric [RhIII2Pen4]2– or oligomeric {RhIII2L4}n (L = Cys, NAC) complexes with bridging thiolate groups. Analyses of Rh K edge extended X-ray absorption fine structure (EXAFS) data reveal 3–4 Rh–S and 2–3 Rh–(N/O) bonds around six-coordinated Rh(III) ions at mean distances of 2.33 ± 0.02 and 2.09 ± 0.02 Å, respectively. In the N-acetyl-l-cysteine compound, the RhIII···RhIII distance 3.10 ± 0.02 Å obtained from the EXAFS spectrum supports trithiolate bridges between the Rh(III) ions, as was also found when using glutathione as ligand. In the cysteine and penicillamine complexes, double thiolate bridges join the Rh(III) ions, with the nonbridging Cys2– and Pen2– ligands in tridentate chelating (S,N,O) mode, which is consistent with the ΔδC = 7.3–8.4 ppm shift of the COO– signal in their carbon-13 cross polarization magic angle spinning (CPMAS) NMR spectra. For the penicillamine complex, the 2475.6 eV peak in its S K edge X-ray absorption near edge structure (XANES) spectrum shows partial oxidation, probably caused by peroxide generated from reduction of dissolved O2, of thiolato to sulfenato (S=O) groups, which were also identified by ESI-MS for all three {RhIII2L4}n compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.