Abstract

Abstract The solvent-free interaction of 2-phenylpyrrole with bromobenzoylacetylene (room temperature) upon their grinding with solid metal oxides (MgO, CaO, ZnO, BaO, Al2O3, TiO2, ZrO2) and salts (CaCO3, ZrSiO4) leads to either the cross-coupling product or the adduct of pyrrole addition to the riple bond of acetylene. The ethynylation is accompanied by the formation of intermediate and side products: E-2-(1-bromo-2-benzoylethenyl)-5-phenylpyrrole and 1,1-di(5-phenylpyrrol-2-yl)-2-benzoylethene. The activity of the metal oxides in the ethynylation reaction falls in the order (in the brackets, the content of 2-benzoylethynyl-5-phenylpyrrole in the reaction mixture is given): ZnO (81%), BaO (73%), Al2O3 (71%), MgO (69%), CaO (50%). The oxides, SiO2, TiO2, ZrO2, and the salts, CaCO3 and ZrSiO4, are inactive in the ethynylation reaction affording only the intermediate adduct, with ZrO2 the isolated yield of the bromoethenylpyrrole reaching 60%. ESR monitoring shows the reaction to start from one electron transfer from pyrrole to acetylene mediated by the oxide surface. The adduct is readily converted on Al2O3 to 2-(benzoylethynyl)-5-phenylpyrrole crystallized mostly as cis-rotamer (X-ray data).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.