Abstract

Quinones are organic molecules that facilitate electron-transfer reactions in terrestrial environments. The reduced forms, hydroquinones, are powerful reductants that can trigger non-enzymatic radical-based decomposition of organic matter and contaminants by simultaneous reduction of iron and oxygen. Iron oxides often occur as coatings on other minerals, thus our study investigated the reactions between the ferric oxyhydroxide (FeO(OH)) surface coatings on gibbsite (Al(OH)3) and 2,6-dimethoxy-1,4-hydroquinone (2,6-DMHQ). The main aim was to investigate the oxidation of 2,6-DMHQ and the generation ∙OH in the presence of O2 at low Fe concentrations in a novel setup that allows local structural characterization. The heterogeneous redox reactions between 2,6-DMHQ and the FeO(OH) coatings were studied at pH 5.0 as a function of the amount of Fe present on the gibbsite surfaces, including the effect of aging of the FeO(OH) coatings. The results showed that reactions between 2,6-DMHQ and FeO(OH) coated gibbsite under ambient conditions can generate substantial amounts of ·OH, comparable with amounts generated on pure ferrihydrite surfaces. The ·OH is the product of two sequential reactions: hydroquinone oxidation by O2 and degradation of the formed H2O2. The calculated rate constant of the former reaction is the same regardless of amount of FeO(OH) coating suggesting a surface catalytic process where 2,6-DMHQ is oxidized by O2 resulting in formation of H2O2. Subsequently, the observed induction period, the low Fe2+ (aq) concentrations in solution and the dependency of FeO(OH) coating amount influencing ·OH formation suggest that the pathway for ∙OH is through H2O2 decomposition by the surface sites on the FeO(OH) coating. Overall, this study shows that co-existence of oxygen, FeO(OH) and organic reductants, possibly secreted by soil microorganisms, creates favorable conditions for generation of ·OH contributing to decomposition of organic matter and organic pollutants in soil environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.