Abstract

The reactions of formaldehyde, acetaldehyde and acetone on Fe(100) were studied by temperature-programmed reaction spectroscopy and X-ray photoelectron spectroscopy (XPS). Formaldehyde and acetaldehyde were observed to react with adsorbed hydrogen to form adsorbed alkoxy intermediates. These reactions occurred at low temperature (ca. 200 K). In the absence of adsorbed hydrogen, formaldehyde and acetaldehyde decomposed to adsorbed CO and hydrogen. This reaction was also observed at low temperatures. On an initially clean surface the aldehydes first decomposed, forming adsorbed hydrogen which subsequently reacted with adsorbed aldehyde to form an alkoxy intermediate. The alkoxy intermediates reacted to form CO and H 2 primarily, with lesser amounts of alcohol, aldehyde and hydrocarbon products. Acetone reacted differently from the aldehydes and did not appear to form an alkoxy intermediate. XPS results suggested that acetone and acetaldehyde did not adsorb in their keto form on the surface and it is suggested that they adsorbed as enol intermediates. The distinct reaction behavior of acetone may be due to these enol intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call