Abstract

Previous research has attributed the fatigue susceptibility of silicon films to the sequential oxidation of the silicon and environmentally-assisted crack growth solely within the SiO<sub>2</sub> surface layer. This “reaction-layer fatigue” mechanism is only significant in thin films where the critical crack size for catastrophic failure can be reached by a crack growing within the oxide layer. Fracture mechanics analyses can provide important insight into the limitations of structural silicon films. In this paper, our current understanding of the reaction-layer fatigue mechanism will be reviewed. Current results suggest that surface oxide layer thicknesses as low as 10-20 nm may induce reaction-layer fatigue when considering failure of the specimen for a crack reaching the silica/silicon interface. In contrast, 3-fold thicker surface oxide layers are required for failure due to a crack <i>within</i> the oxide layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.