Abstract

Colloidal quantum dots (QDs) are attracting research interest because of their unique optical properties that result from the quantum confinement effect. ZnSe QDs, which are II–VI semiconductors, offer a wide direct bandgap (2.7 eV), making them promising for applications such as light-emitting diodes, photodetectors, and biomedical labeling. In the present work, colloidal ZnSe (QDs) were synthesized by the hot-injection method with a Zn:Se ratio of 1:1. The optical properties of ZnSe QDs obtained at different reaction times were investigated by spectrophotometric UV–vis absorption and emission measurements. The as-synthesized ZnSe QDs exhibit blue excitonic emission, and no defect emission was detected. Transmission electron micrographs indicated that the QDs have a spherical morphology with dimensions ranging from 3.69 to 4.53 nm. In particular, the Brus model was applied to demonstrate a correlation between the QD sizes and the optical bandgaps obtained from Tauc plots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.