Abstract

Fluorogenic sensors capable of spatiotemporally detecting Fe(2+) in biological systems are highly valuable in the study of iron biology. Toward this end, a new "off-on" Fe(2+)-selective fluorescent probe has been developed by incorporating an Fe(2+)-induced N-O cleavage of acylated hydroxylamine moiety into the naphthalimide fluorophore. The probe displays facile response (within 15 min) and good selectivity toward Fe(2+) with >27-fold enhancement of fluorescence intensity and high sensitivity of as low as 0.5 μM with a noticeable 3-fold fluorescence enhancement. These features of the probe have been transformed into in the convenient detection of endogenous, basal level of labile Fe(2+) pools in living cells. Furthermore, we have demonstrated the capacity of the probe for the studies of important Fe(2+) related biological functions. It can respond to the Zn(2+)-induced Fe(2+) flux, an important event observed in stroke, and facilely detect the elevated level of Fe(2+) in the brain tissue of a rat undergoing ischemic stroke at the ischemic site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call