Abstract

The reaction zones of normal and overdriven detonation waves in a number of solid HE were studied by recording the shock–wave luminosity in chloroform placed at the end of a high–explosive (HE) charge. The data obtained have led to some conclusions on the regularities of HE decomposition in a detonation wave. Thus, in a powerful solid HE, the heterogeneity of the charge plays a decisive role in the formation of a chemical spike. In this case, the time of reaction of heterogeneous HE correlates with the Jouguet pressure rather than with the sensitivity of the HE. The experimental parameters of the chemical spike are in good agreement with calculations on an extrapolated shock adiabat of the HE. This, however, does not indicate that the fraction of the HE decomposed directly at the detonation front is small but only shows that it depends smoothly on the front parameters. In overdriven detonation waves, an increase in the overcompression pressure is accompanied by an increase in the fraction of the HE decomposed directly at the front, and with a relatively large increase in pressure, the chemical spike completely disappears. In TATB and TATB–based HE, this occurs at a pressure of 40 GPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call