Abstract

The activity of central pattern generator (CPG) neurons is processed by several different readers: neurons within the same CPG, neurons in other interconnected CPGs and muscles. Taking this into account, it is not surprising that CPG neurons may use different codes in their activity. In this paper, we study the capability of a CPG model to react to neural signatures through excitatory synapses. Neural signatures are cell-specific intraburst spike timings within their spiking–bursting activity. These fingerprints are encoded in the activity of the cells in addition to the information provided by their slow wave rhythm and phase relationships. The results shown in this paper suggest that neural signatures can be a mechanism to induce fast changes in the rhythm generated by a CPG through excitatory synapses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.