Abstract

Many movements that people perform every day are directed at visual targets, e.g., when we press an elevator button. However, many other movements are not target-directed, but are based on allocentric (object-centered) visual information. Examples of allocentric movements are gesture imitation, drawing or copying. Here, show a reaction time difference between these two types of movements in four separate experiments. In Exp. 1, subjects moved their eyes freely and used direct hand movements. In Exp. 2, subjects moved their eyes freely and their movements were tool-mediated (computer mouse). In Exp. 3, subjects fixated a central target and the visual field in which visual information was presented was manipulated. Experiment 4 was identical to Exp. 3 except for the fact that visual information about targets disappeared before movement onset. In all four experiments, reaction times in the allocentric task were approximately 35ms slower than they were in the target-directed task. We suggest that this difference in reaction time between the two tasks reflects the fact that allocentric, but not target-directed, movements recruit the ventral stream, in particular lateral occipital cortex, which increases processing time. We also observed an advantage for movements made in the lower visual field as measured by movement variability, whether or not those movements were allocentric or target-directed. This latter result, we argue, reflects the role of the dorsal visual stream in the online control of movements in both kinds of tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call