Abstract

Reaction systems originated as a formal model for processes inspired by the functioning of the living cell. The underlying idea of this model is that the functioning of the living cell is determined by the interactions of biochemical reactions and these interactions are based on the mechanisms of facilitation and inhibition. Since their inception, reaction systems became a well-investigated novel model of computation. Following this line of research, in this paper we discuss a systematic framework for investigating a whole range of equivalence notions for reaction systems. Some of the equivalences are defined directly on reaction systems while some are defined through transition systems associated with reaction systems. In this way we establish a new bridge between reaction systems and transition systems. In order to define equivalences which capture various ways of interacting with an environment, we also introduce models of the environment which evolve in a finite-state fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.