Abstract

Aluminum nitride–boron nitride (AlN–BN) composites were prepared based on the nitridation of aluminum boride (AlB2). AlN powder was added to change the BN volume fraction in the obtained composites. Thermogravimetry–differential thermal analysis (TG‐DTA), X‐ray diffractometry, and the nitridation ratio were used to investigate the nitridation process of AlB2. At ∼1000°C, a sharp exothermic peak occurred in the DTA curve, corresponding to the rapid nitridation of aluminum in AlB2. On the other hand, the nitridation of the transient phase, Al1.67B22, was very slow when the temperature was <1400°C. However, the nitridation speed obviously accelerated at temperatures >1600°C. The pressure of the nitrogen atmosphere was also an important factor; high nitrogen pressure remarkably promoted nitridation. Treatment at 2000°C was disadvantageous for nitridation, because of the rapid formation of a dense surface layer that inhibited nitrogen diffusion into the specimen interior. Three specimens, with 5 wt% Y2O3 additive and different BN contents, were prepared by pressureless reactive sintering, according to the determined sintering schedule. Electron microscopy (scanning and transmission) observations revealed that the in‐situ‐formed BN flakes were homogeneously and isotropically distributed in the AlN matrix. A schematic mechanism for microstructural formation was developed, based on the results of nitridation and the microstructural features of the obtained composites. The obtained composites, with a low BN content, exhibited a high bending strength, comparable to that of reported hot‐pressed AlN–BN composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.