Abstract

The low-temperature behavior of the selective catalytic reduction (SCR) process with feed gases containing both NO and NO2 was investigated. The two main reactions are 4NH3 + 2NO + 2NO2 → 4N2 + 6H2O and 2NH3 + 2NO2 → NH4NO3 + N2 + H2O. The “fast SCR reaction” exhibits a reaction rate at least 10 times higher than that of the well-known standard SCR reaction with pure NO and dominates at temperatures above 200 °C. At lower temperatures, the “ammonium nitrate route” becomes increasingly important. Under extreme conditions, e.g., a powder catalyst at T ≈ 140 °C, the ammonium nitrate route may be responsible for the whole NOx conversion observed. This reaction leads to the formation of ammonium nitrate within the pores of the catalyst and a temporary deactivation. For a typical monolithic sample, the lower threshold temperature at which no degradation of catalyst activity with time is observed is around 180 °C. The ammonium nitrate route is interesting from a standpoint of general DeNOx mechanisms: This reac...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call