Abstract

FeII/α-ketoglutarate (FeII/αKG)-dependent enzymes offer a promising biocatalytic platform for halogenation chemistry owing to their ability to functionalize unactivated C-H bonds. However, relatively few radical halogenases have been identified to date, limiting their synthetic utility. Here, we report a strategy to expand the palette of enzymatic halogenation by engineering a reaction pathway rather than substrate selectivity. This approach could allow us to tap the broader class of FeII/αKG-dependent hydroxylases as catalysts by their conversion to halogenases. Toward this goal, we discovered active halogenases from a DNA shuffle library generated from a halogenase-hydroxylase pair using a high-throughput in vivo fluorescent screen coupled to an alkyne-producing biosynthetic pathway. Insights from sequencing halogenation-active variants along with the crystal structure of the hydroxylase enabled engineering of a hydroxylase to perform halogenation with comparable activity and higher selectivity than the wild-type halogenase, showcasing the potential of harnessing hydroxylases for biocatalytic halogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.