Abstract

Chemical reactions often have multiple pathways, the control of which is of fundamental and practical importance. In this Letter, we examine the dynamics of the O + HO2 → OH + O2 reaction, which plays an important role in atmospheric chemistry, using quasi-classical trajectories on a recently developed full-dimensional potential energy surface (PES). This reaction has two pathways leading to the same products: the H abstraction pathway (Oa + HObOc → OaH + ObOc) and the O abstraction pathway (Oa + HObOc → ObH + OaOc). Under thermal conditions, the reaction is dominated by the latter channel, which is barrierless, leading to vibrational excitation of the O2 product. However, we demonstrate that excitation of the HO2 reactant in its O-H (v1) vibrational mode results in dramatic switching of the reaction pathway to the activated H abstraction channel, which leads to a highly excited OH product vibrational state distribution. The implications of such dynamical effects in the atmospheric chemistry are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call