Abstract
The reaction paths of the C-C and C-H bond cleavage in the anthracene and phenanthrene aromatic molecules are studied by applying the ab-initio DFT method. It is found that the C-C bond cleavage proceeds via a singlet aromatic transition state, compelled through a disrotatoric ring opening reaction. A suprafacial H atom shift follows the transition state, leading to the formation of a methylene -CH 2 and an acetylenic or allenic moiety. The calculated activation energies for anthracene range from 158.81-208.90 kcal/mol and the reaction energies from 96.106-156.976 kcal/mol. For phenanthrene, the energy values are 157.39-202.34 kcal/mol and 62.639-182.423 kcal/mol, respectively. For the C-H cleavage reactions, the calculated reaction energies for all C-H bonds in both molecules are almost similar, 116-117 kcal/mol. The activation energy values for anthracene and phenanthreneare 149.75-161.27 and 161.24-163.00 kcal/mol, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.