Abstract

Reaction of trimethylsilylacetylenes Me(3)SiC≡CR with SbF(5) in the solid state was investigated using matrix isolation infrared spectroscopy and quantum-mechanical calculations. Two reaction pathways were detected. Replacement of the trimethylsilyl group with SbF(4) produces neutral antimony acetylides F(4)SbC≡CR. Acetylenic bond protonation produces silyl cation 6-R, fully bridged for R = H and SiMe(3). High total charges on the bridging SiMe(3) group and low Me(3)Si-C bond orders to acetylenic moiety, both calculated at the MP4(SDQ)/6-311G(d,p) level of theory, indicate high silyl cation character of these species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call