Abstract

Flavin reductase catalyzes the reduction of free flavins by NAD(P)H. As isolated, Escherichia coli flavin reductase does not contain any flavin prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin substrate in a ternary complex prior to oxidoreduction. The reduction of riboflavin by NADPH catalyzed by flavin reductase has been studied by static and rapid kinetics absorption spectroscopies. Static absorption spectroscopy experiments revealed that, in the presence of riboflavin and reduced pyridine nucleotide, flavin reductase stabilizes, although to a small extent, a charge-transfer complex of NADP+ and reduced riboflavin. In addition, reduction of riboflavin was found to be essentially irreversible. Rapid kinetics absorption spectroscopy studies demonstrated the occurrence of two intermediates with long-wavelength absorption during the catalytic cycle. Such intermediate species exhibit spectroscopic properties similar to those of charge-transfer complexes of oxidized flavin and NAD(P)H, and reduced flavin and NAD(P)+, respectively, which have been identified as intermediates during the reaction of flavoenzymes of the ferredoxin-NADP+ reductase family. Thus, a minimal kinetic scheme for the reaction of flavin reductase with NADPH and riboflavin can be proposed. After formation of the Michaelis complex of flavin reductase with NADPH and riboflavin, a first intermediate, identified as a charge-transfer complex of NADPH and riboflavin, is formed. It is followed by a second charge-transfer intermediate of enzyme-bound NADP+ and reduced riboflavin. The latter decays, yielding the Michaelis complex of flavin reductase with NADP+ and reduced riboflavin, which then dissociates to complete the reaction. These results support the initial hypothesis of a structural similarity between flavin reductase and the enzymes of the ferredoxin-NADP+ reductase family and extend it at a functional level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.