Abstract
Methyl acetyl phosphate is a competitive inhibitor of the reduction of acetoacetate by D-3-hydroxybutyrate dehydrogenase. The material also irreversibly inactivates the enzyme. The kinetics of the inactivation are consistent with methyl acetyl phosphate acetylating the conjugate base of a hydrogen bond donor. Protection offered by a substrate analogue (methyl acetonylphosphonate) in the presence of coenzyme implicates reaction at the cationic active site. Reversible protection by the amino group reagent 2,3-dimethylmaleic anhydride suggests that methyl acetyl phosphate reacts with an amino group. Sulfhydryl reagents and acetyl phosphate, a poorer acetylating agent, do not inactivate the enzyme. The pH dependence of the inactivation suggests that the acetylation occurs at a site that has a pKa of 8.2. The utility of methyl acetyl phosphate and other acyl phosphate monoesters in reacting with lysines adjacent to cationic sites of enzymes, hemoglobin, and histones is noted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.