Abstract

The reaction of the periventricular tissue of the lateral ventricle to silicone rubber shunt tubing was studied by scanning and transmission electron microscopy. Nonfunctioning shunt tubing was implanted bilaterally into the frontal horns of rabbits, which were then sacrificed at postoperative intervals of 3 days to 16 weeks. Colchicine was used to study mitotic activity at the 3-day to 4-week postimplantation intervals. Reactive changes that occurred in the periventricular tissue correlated with the degree of contact with the implant and also with the duration of the postoperative period. Ependymal cells underwent progressive attenuation and sloughed completely in the most severely affected areas. Prominent gliosis in the subependyma accompanied the ependymal changes. The ventricular surface directly adjacent to holes in the implant developed ependyma-covered glial evaginations which grew into the implant holes beginning 1 week postimplantation. In the region of the outgrowths, ependymal mitotic activity was significantly increased at 1 and 2 weeks postimplantation. and astroglial mitotic activity was increased at 3 days and 1 week. Proliferation of ependymal and glial cells in the area touching the shunt tubing and mechanical factors contributed to the development of cellular outgrowths which may be a factor in the pathogenesis of shunt obstruction in human hydrocephalus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.