Abstract

Reaction of oxygen atoms with propene is an important step in combustion processes particularly affecting the profiles of intermediate species and flame speed. The relative importance of different pathways of this multichannel reaction at different temperatures represents significant theoretical interest and is essential for modeling combustion systems. In the present work, we report the first experimental investigation of the products of the O(3P) + C3H6 reaction over an extended temperature range (298-905 K). By using a low pressure flow reactor combined with a quadrupole mass spectrometer, the yields of the five reaction products, H atom, CH3, C2H5, CH2O and OH were determined as a function of temperature between 298 and 905 K: 0.0064 × (T/298)2.74 exp(765/T), 1.41 × (T/298)-1.0 exp(-335/T), 0.92 × (T/298)-1.41 exp(-381/T), 0.17 × (T/298)0.165 exp(-36/T), and 0.0034 × (T/298)2.34 exp(788/T), respectively (corresponding to the variation of the respective yields between 298 and 905 K in the ranges 0.08-0.31, 0.46-0.32, 0.26-0.12, 0.15-0.19, and 0.05-011), independent of pressure in the range 1-8 Torr of helium. For the yields of the minor reaction products, H2 and CH3CHO the upper limits were determined as 0.2 and 0.05, respectively. These results are compared with the experimental data and theoretical calculations available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.