Abstract
Myeloperoxidase plays a fundamental role in oxidant production by neutrophils. The enzyme uses hydrogen peroxide to oxidize chloride (Cl-), bromide (Br-), iodide (I-), and the pseudohalide thiocyanate (SCN-) to their respective hypohalous acids. This study for the first time presents transient kinetic measurements of the oxidation of these halides and thiocyanate by the myeloperoxidase intermediate compound I, using the sequential mixing stopped-flow technique. At pH 7 and 15 degrees C, the two-electron reduction of compound I to the native enzyme by Cl- has a second-order rate constant of (2.5 +/- 0.3) x 10(4) M(-1) s(-1), whereas reduction of compound I by SCN- has a second-order rate constant of (9.6 +/- 0.5) x 10(6) M(-1) s(-1). Iodide [(7.2 +/- 0.7) x 10(6) M(-1) s(-1)] is shown to be a better electron donor for compound I than Br- [(1.1 +/- 0.1) x 10(6) M(-1) s(-1)]. The pH dependence studies suggest that compound I reduction by (pseudo-)halides is controlled by a residue with a pKa of about 4.6. The protonation of this group is necessary for optimum (pseudo-)halide anion oxidation. These transient kinetic results are underlined by steady-state spectral and kinetic investigations. SCN- is shown to be most effective in shifting the system myeloperoxidase/hydrogen peroxide from the peroxidatic cycle to the halogenation cycle, whereas iodide is shown to be more effective than bromide which in turn is much more effective than chloride. Decreasing pH increases the rate of this transition. Our results show that thiocyanate is an important substrate of myeloperoxidase in most environments and that hypothiocyanate is likely to contribute to leukocyte antimicrobial activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.