Abstract
Theaflavins are a family of compounds, whose chemistry has been sparsely investigated. They can comprise up to 40% the dry weight of black tea. They are known to chelate metals, however very little knowledge exists on the mechanisms involved. There is some correlation between both of these areas in that following degradation of the iron theaflavin complex, subsequent redox reactions may lead to the formation of similar products on both occasions. The interaction of iron(III) with theaflavin at pH <3.0 is investigated by means of liquid chromatography mass spectroscopy (LC-MS), stopped flow spectroscopy and multivariate data analysis. Iron theaflavin complexes are formed which subsequently decay to form a number of oxidative species. The difficulties involved in the elucidation of the structure of polymeric phenolic compounds from black tea has been highlighted by numerous authors. The intermediates and major low molecular weight oxidised theaflavin products from the reaction of excess iron with theaflavin have been detected and identified using multivariate data analysis of diode array spectroscopic data. It is not possible to characterise the extremely polar high molecular weight oxidation products obtained from polyphenol oxidation. High performance liquid chromatography (HPLC) and electrospray mass spectroscopy (ES-MS) detected the low molecular weight oxidised theaflavin species present in the system. Enzymatic oxidation of theaflavin using peroxidase (POD) resulted in the formation of one major low molecular weight species oxidative product, which was fully characterised using nuclear magnetic resonance spectroscopy (NMR), high performance liquid chromatography (HPLC), electrospray mass spectroscopy (ES-MS), UV–visible (UV–Vis) and Fourier transform infra-red spectroscopy (FT-IR). The major objective of this work is to investigate the reaction of iron(III) with theaflavin and to add some insight into the mechanistic interaction of iron(III) with this family of compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.