Abstract

The rate constant for the reaction of hydroxyl radicals with nitric acid has an unusual pressure and temperature dependence. To explore the mechanism for this reaction, we have measured rate constants for reactions of isotopically substituted species OD + DNO3, OH + DNO3, OD + HNO3, and 18OH + HNO3 and the yield of NO3 product. Deuterium substitution on nitric acid results in more than a 10-fold reduction in the rate constant, removes the pressure dependence (over the observed range of 20−200 Torr in He and SF6), and leads to a strongly curved Arrhenius temperature dependence. Deuterium substitution on hydroxyl increases the rate constant slightly but does not change the pressure dependence. There is no evidence for exchange reactions in the isotopically mixed reactions. Absorption measurements of the NO3 product yield show that the title reaction produces nitrate radical with unit efficiency over all temperatures and pressures studied. We discuss the implications of the measured rate constants, product y...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.