Abstract

The products of the reaction of OH with acetone (OH + CH3C(O)CH3 → products) were investigated using a discharge flow tube coupled to a chemical ionization mass spectrometer. It was shown that the yield of acetic acid from the reaction was less than 1% between 237 and 353 K. The yield of acetonyl radical was measured to be (96 ± 11)%, independent of temperature, between 242 and 350 K. The rate coefficients for the reaction were measured with this system to be the same as those reported in part 1 (J. Phys. Chem. A 2003, 107, 5014). The rate coefficients for the removal of OH (v = 1) by acetone and acetone-d6 were shown to be (2.67 ± 0.15) × 10-11 and (3.45 ± 0.24) × 10-11 cm3 molecule-1 s-1, respectively, at 295 K. It was shown that the enthalpy of reaction for the formation of an OH−acetone adduct is more than −8 kcal mol-1 (i.e., the adduct is bound by at most 8 kcal mol-1) at 203 K. On the basis of these observations and those from part 1, we deduce that the reaction of OH with acetone occurs through a ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.