Abstract

The potential energy surface and chemical kinetics for the reaction of HO with CO, which is an important process in both combustion and atmospheric chemistry, were computed using high-level ab initio quantum chemistry in conjunction with semiclassical transition state theory under the limiting cases of high and zero pressure. The reaction rate constants calculated from first principles agree extremely well with all available experimental data, which range in temperature over a domain that covers both combustion and terrestrial atmospheric chemistry. The role of quantum tunneling is confirmed to be extremely important, which supports recent work by Continetti and collaborators regarding the loss of hydrogen atoms from vibrationally excited states of HOCO. A sensitivity analysis has been carried out and serves as the basis for a plausible estimate of uncertainty in the calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.