Abstract

The adsorption and dissociation of H2S and S2 on a series of oxide (Al2O3, Cr2O3, Cr3O4, Cu2O, ZnO) and metal/oxide (Cu/Al2O3, Cu/ZnO) surfaces have been studied using synchrotron-based high-resolution photoemission. H2S and S2 mainly interact with the metal centers of the oxides. At 300 K, H2S undergoes complete decomposition. The rate of decomposition on Al2O3 is much lower than those found on Cr3O4, Cr2O3, ZnO, and Cu2O. For these systems, the smaller the band gap in the oxide, the bigger its reactivity toward S-containing molecules. The results of ab initio SCF calculations for the adsorption of H2S, HS, and S on clusters that resemble the (0001) face of α-Al2O3, α-Cr2O3, and ZnO show that the S-containing species interact stronger with Cr or Zn than with Al centers. These theoretical results and the trends seen in the experimental data indicate that the reactivity of an oxide mainly depends on how well its bands mix with the orbitals of H2S or HS. The electrostatic interactions between the dipole of ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.