Abstract

Transesterification and epoxide ring-opening reactions are two mechanism routes that explain chemical modifications of macromolecules by glycidyl methacrylate (GMA). Although the coupling reaction of the GMA with macromolecules has widely been investigated, there are still mechanisms that remain to be explained when GMA is processed in an aqueous solution at different pH conditions. To this end, reaction mechanisms of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAAc) by GMA in water in acidic and basic conditions were investigated thoroughly. The presence of hydroxyl groups in PVA and carboxyl groups in PAAc allowed for a better evaluation of the reaction mechanisms. The analysis of the (1)H and (13)C NMR spectra clearly demonstrated that the chemical reactions of GMA with carboxyl groups and alcohols of the macromolecules in an aqueous solution are dependent on pH conditions. At pH 3.5, the GMA reacts with both the carboxylic and the hydroxyl groups through an epoxide ring-opening mechanism. At pH 10.5, the GMA undergoes a hydrolysis process and reacts with hydroxyl groups by way of both the transesterification and the epoxide ring-opening mechanisms, whereas the ring-opening reaction is the preferential pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.