Abstract

The oxidative half-reaction of electron-transfer flavoprotein (ETF), electron transfer from ETF to electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO), is dependent on complementary surface charges on the two proteins. ETF is the positively charged member of the redox pair. The evidence is based on the pH and ionic strength dependencies of the comproportionation of oxidized ETF and ETF hydroquinone catalyzed by ETF-QO and on the effects of chemical modification of ETF on the comproportionation reaction. Acetylation of one and five epsilon-amino groups of lysyl residues results in 3- and 13-fold increases, respectively, in the Km of ETF-QO for ETF but no change in Vmax. Amidination, which maintains positive charge at modified loci, has no effect on steady-state kinetic constants. These chemical modifications have no effect on the equilibrium constant for equilibration of ETF redox states. The Km of ETF-QO for ETF is pH dependent above pH 8.5, suggesting titration of lysyl residues as previously observed in studies of the reductive half-reaction of ETF [Beckmann, J. D., & Frerman, F. E. (1983) J. Biol. Chem. 258, 7563-7569]. The ionic strength dependence of TN/KmETF for the reaction follows the limiting Brønsted equation ln (TN/Km) = ln k0 + 2 alpha Z1Z2I1/2, and Z1Z2, the product of charges on the reacting proteins, is similar to the value of Z1Z2 for the reductive half-reaction of ETF by the general acyl-CoA dehydrogenase. The ETF-QO-catalyzed comproportionation reaction exhibits a primary deuterium isotope effect in D2O, perhaps indicating the participation of solvent water in the electron-transfer reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.