Abstract

The role of aqueous surfaces in promoting atmospheric chemistry is increasingly being recognized. However, the bimolecular chemistries of Criegee intermediates, which influence the tropospheric budget of OH radicals, organic acids, hydroperoxides, nitrates, sulfates, and particulate material, remain less explored on an aqueous surface. Herein we have employed Born-Oppenheimer molecular dynamics simulations and two-layer ONIOM (QM:MM) in an electronic embedding scheme to study the reaction and the spectroscopic signal of anti-CH3CHOO with nitric acid (HNO3) at the air-water interface, which is expected to be an important reaction in polluted urban environments. The results reveal that on the water surface, the HNO3-mediated hydration of anti-CH3CHOO is the most dominant pathway, whereas the traditionally believed direct reaction between anti-CH3CHOO and HNO3, which results in the formation of nitrooxyethyl hydroperoxide, is only the minor channel. Both reaction pathways follow a stepwise mechanism at the air-water interface and occur on the picosecond time scale. These new reactions are expected to be relevant in the hazy environments of globally polluted urban regions where nitrates and sulfates are abundantly present. During the hazy period, the high relative humidity and the presence of fog droplets may favor the HNO3-mediated Criegee hydration over the nitrooxyethyl hydroperoxide forming reaction. A similar reaction mechanism with Criegee intermediates could be expected on the water surface for organic acids, which possess HNO3-like functionalities, and may play a role in improving our knowledge of the organic acid budget in the terrestrial equatorial regions and high northern latitudes. The ONIOM calculations suggest that the N-O stretching bands around 1600-1200 cm-1 and NO2 bending band around 750 cm-1 in nitrooxyethyl hydroperoxide could be used as spectroscopic markers for distinguishing it from hydrooxyethyl hydroperoxide on the water surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.