Abstract
The reaction mechanism of the Y+ cation with CH3CHO has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ECP/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, methyl C-H and C-O activation. These reactions can lead to four different products (Y+CH4 + CO, Y+CO + CH4, Y+COCH2 + H2 and Y+O + C2H4). The minimum energy reaction path is found to involve the spin inversion in the different reaction steps, this potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.