Abstract

Calcium phosphate cements (CPCs) with different amounts of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA) (TTCP/DCPA molar ratio from 0.25 to 2.00) were prepared to further understand the setting reaction and the factors that could influence the properties of CPCs. Quantitative X-ray diffraction patterns, Fourier transform IR spectra, and diametral tensile strength of the set mass were measured along with pH measurements of the CPC suspension. Calcium-deficient hydroxyapatite (d-HAP) with a calcium to phosphate molar ratio of approximately 1.5 was formed initially in the CPC setting consisting of an equimolar mixture of TTCP and DCPA. This gradually transformed into stoichiometric HA (s-HA) with increasing incubation time. The s-HA was formed in the initial stage when the CPC contained an excess amount of TTCP. In contrast, maturation to s-HAP was slow when the CPC contained excess amounts of DCPA. The highest mechanical strength of set CPC was associated with an equimolar mixture of TTCP and DCPA, and the mechanical strength decreased as the TTCP/DCPA molar ratio deviated from 1.00. We concluded, therefore, that the setting reaction and the nature of the resulting set mass are dependent on the molar ratios of TTCP and DCPA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.