Abstract
Myoglobin (Mb) from gastropod mollusc Aplysia limacina shows only 20% sequence homology to the 'prototype' sperm whale Mb but exhibits a typical Mb fold and can reversibly bind oxygen. An intriguing feature of aplysia Mb is that it lacks the distal histidine and displays a ligand stabilisation based on an arginine. Here we report the reaction of aplysia metMb with hydrogen peroxide studied by optical and electron paramagnetic resonance (EPR) spectroscopies. Two electron oxidation of the protein by H2O2 results in formation of two intermediates typical for this class of reactions, the oxoferryl haem state and a globin-bound free radical. An unusual characteristic of the aplysia Mb reaction is formation, prior to haem oxidation, of an optically distinct compound with an EPR spectrum typical of the low spin Fe3+ haem state. This compound is interpreted as the complex between H2O2 and the ferric haem state (Compound), formed prior to cleavage of the dioxygen bond. We conclude that H2O2 is singly deprotonated in Compound which can thus be notated as [Fe3+--OOH]. A new low spin ferric haem state has been observed over the period of Compound decay, and hypotheses have been formulated as to its identity and role. The location of the protein bound radical observed in aplysia Mb is discussed in light of the fact that the protein does not have any tyrosine residues, the most common site of free radical formation in the haem protein/peroxide systems. All intermediates of the reaction are kinetically characterised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.