Abstract

In ectotherms, temperature induces similar developmental and evolutionary responses in body size, with larger individuals occurring or evolving in low temperature environments. Based on the occasional occurrence of opposite size clines, showing a decline in body size with increasing latitude, an interaction between generation time and growing season length was suggested to account for the patterns found. Accordingly, multivoltine species with short generation times should gain high compound interest benefits from reproducing early at high temperatures, indicating potential for extra generations, even at the expense of being smaller. This should not apply for obligatorily monovoltine populations. We explicitly test the prediction that monovoltine populations (no compound interest) should be selected for large body size to maximise adult fitness, and therefore size at maturity should respond only weakly to temperature. In two monovoltine populations (an Alpine and a Western German one) of the butterfly Lycaena hippothoe, increasing temperatures had no significant effect on pupal weight and caused a slight decrease in adult weight only. In contrast, two closely related, yet potentially multivoltine Lycaena populations showed a greater weight loss at increasing temperature (in protandrous males, but not in females) and smaller adult sizes throughout. Thus, the results do support our predictions indicating that the compound interest hypothesis may yield causal explanations for the relationship between temperature and insect size at maturity. At all temperatures, the alpine population had higher growth rates and concomitantly shorter development times (not accompanied by a reduction in size) than the other, presumably indicating local adaptations to different climates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.