Abstract
Contemporary group (CG) estimates of different phenotypes have not been widely explored for pigs. The objective of this study was to extend the traits used to derive environmental descriptors of the growing pig, to include CG estimates of early growth between birth and start of feed intake test (EADG), growth during feed intake test (TADG), lifetime growth (ADG), daily feed intake (DFI), backfat (BF) and muscle depth (MD). Pedigree and performance records (n=7,746) from a commercial Australian piggery were used to derive environmental descriptors based on CG estimates of these six traits. The CG estimates of growth traits described different aspects of the environment from the CG estimates of carcass traits (r<0.10). These definitions of the environment then were used in reaction norm analysis of growth, to evaluate sire-by-environment interaction (Sire×E) for growth. The most appropriate reaction norm model to evaluate Sire×E for growth was dependent on the environmental descriptor used. If the trait used to derive an environmental descriptor was distinctly different from growth (e.g., BF and MD), CG as an additional random effect was required in the model. If not included, inflated common litter effect and sire intercept variance suggest there was unaccounted environmental variability. There was no significant Sire×E using any of the definitions of the environment, with estimated variance in sire slopes largest when environments were defined by BF ( =97±83(g/day)2 ), followed by environments defined by DFI ( =39±101(g/day)2 ). While there appears to be differences in ability to detect Sire×E, improved data structure is required to better assess these environmental descriptors based on alternative traits. The ideal trait, or combination of traits, used to derive environmental descriptors may be unique for individual herds. Therefore, multiple phenotypes should be further explored for the evaluation of Sire×E for growth in the pig.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.