Abstract

Layered lithium-rich cathode materials have attracted extensive interest owing to their high theoretical specific capacity (320-350 mA h g-1 ). However, poor cycling stability and sluggish reaction kinetics inhibit their practical applications. After many years of quiescence, interest in layered lithium-rich cathode materials is expected to revive in answer to our increasing dependence on high-energy-density lithium-ion batteries. Herein, we review recent research progress and in-depth descriptions of the structure characterization and reaction mechanisms of layered lithium-rich manganese-based cathode materials. In particular, we comprehensively summarize the proposed reaction mechanisms of both the cationic redox reaction of transition-metal ions and the anionic redox reaction of oxygen species. Finally, we discuss opportunities and challenges facing the future development of lithium-rich cathode materials for next-generation lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.