Abstract

The SHS reaction in the Ni–Ti–B4C system starts with the formation of Ni–Ti and Ni–B intermetallic compounds from the solid interacted reaction among the reactants and, subsequently, the formation of Ni–Ti and Ni–B liquid at the eutectic point. Meanwhile, some C atoms from the reaction between Ni and B4C can dissolve into Ni–Ti liquid to form TiC. The heat generated from these reactions can promote the mutual diffusion of Ni–Ti–C and Ni–B liquid and simultaneously accelerate the formation of Ni–Ti–C–B liquid. Finally the precipitation of TiC and TiB2 occur when the C and B atoms in the liquid become supersaturated. The addition of Ni not only promotes the occurrence of the self-propagating high temperature synthesis (SHS) reaction by forming Ni–Ti liquid, but also accelerates the SHS reaction by forming Ni–B liquid and dissociative C. The early appearance of dissociative C from the reaction between Ni and B4C causes the formation of TiC prior to that of TiB2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call