Abstract

4-Hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) are biologically important reactive aldehydes formed during oxidative stress in phospholipid bilayers. They are highly reactive species due to presence of several reaction centers and can react with amino acids in peptides and proteins, as well as phosphoethanolamine (PE) lipids, thus modifying their biological activity. The aim of this work is to study in a molecular detail the reactivity of HNE and ONE toward PE lipids in a simplified system containing only lipids and reactive aldehydes in dichloromethane as an inert solvent. We use a combination of quantum chemical calculations, 1H NMR measurements, FT-IR spectroscopy, and mass spectrometry experiments and show that for both reactive aldehydes two types of chemical reactions are possible: formation of Michael adducts and Schiff bases. In the case of HNE, an initially formed Michael adduct can also undergo an additional cyclization step to a hemiacetal derivative, whereas no cyclization occurs in the case of ONE and a Michael adduct is identified. A Schiff base product initially formed when HNE is added to PE lipid can also further cyclize to a pyrrole derivative in contrast to ONE, where only a Schiff base product is isolated. The suggested reaction mechanism by quantum-chemical calculations is in a qualitative agreement with experimental yields of isolated products and is also additionally investigated by 1H NMR measurements, FT-IR spectroscopy, and mass spectrometry experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.