Abstract

The reaction mechanism of aspartate transcarbamylase from mouse spleen has been determined, using steady-state kinetics, isotope-exchange experiments, inhibition studies with a transition-state analog, and product-inhibition studies. Intersecting reciprocal plots obtained when one substrate was varied against different concentrations of the second substrate indicate that the mechanism is sequential. The transition-state analog, N-(phosphonacetyl)- l-aspartate, was a powerful inhibitor of aspartate transcarbamylase, with an inhibition constant ( K i ) of 2.6 × 10 −8 m at 37 °C and pH 7.4 in 0.05 m Na HEPES buffer. PALA gave competitive inhibition with carbamyl phosphate and noncompetitive inhibition with l-aspartate, indicating that carbamyl phosphate must bind before aspartate for catalysis to occur. A ping-pong mechanism in which carbamyl phosphate binds first was excluded by isotope-exchange experiments, since [ 32P]inorganic phosphate was not incorporated into carbamyl phosphate in the absence of aspartate. Product-inhibition studies showed that only inorganic phosphate and carbamyl phosphate gave a competitive pattern; all other combinations of substrate and product gave noncompetitive inhibition patterns when incubations were carried out at subsaturating concentrations of the second substrate. These inhibition patterns showed that carbamyl phosphate binds first, aspartate binds second, carbamyl aspartate dissociates first, and phosphate dissociates second.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.