Abstract

Research of electro-conductive textiles based on conductive polymers like polypyrrole, has increased in the recent years due to their high potential applications in various field. Conductive polymers behave like insulator in their neutral states with typical electrical conductivity in the range 10-10 to 10-25 Scm-1. These neutral polymers can be converted into semi-conductive or conductive states with conductivities range of 1 Scm-1 to 10-4 Scm-1 through chemical or electro-chemical redox reactions. By the applications of these polymers onto a textile surface, we can be able to obtain novel composites which are strong, flexible, light weight and highly electro-conductive. These textile composites are suitable for applications such as heating pads, sensors, corrosion-protecting materials, actuators, electrochromic devices, EMI shielding etc. The methods of applications of conductive polymers onto the textile surface such as in-situ chemical, in-situ electro-chemical, in-situ vapor phase, in-situ polymerization in a supercritical fluid, solution coating process are described here briefly. Merits and demerits of these methods are mentioned here. Reaction mechanisms of chemical and electro-chemical polymerization proposed by the different researcher are described. Different factors affecting the kinetics of chemical and electro-chemical polymerization are accounted. Influence of textile materials on the kinetics of chemical polymerization is reviewed and reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.