Abstract
Microsomes that were prepared from elicitor-treated Pueraria lobata cell cultures catalyzed the conversion of liquiritigenin, a flavanone, into daidzein, an isoflavone. The reaction was resolved into two steps. 2, 7, 4'-Trihydroxyisoflavanone was formed as a major product when liquiritigenin was incubated with carefully washed microsomes in the presence of NADPH. The structure of 2, 7, 4'-trihydroxyisoflavanone was confirmed by mass and 1H NMR spectroscopies. The enzyme responsible for this rearrangement reaction is a cytochrome P-450-dependent monooxygenase. Upon treatment with a soluble enzyme fraction 2, 7, 4'-trihydroxyisoflavone yielded daidzein quantitatively. The incorporation of 18O from 18O 2 into the 2-hydroxy group of 2, 7, 4'-trihydroxyisoflavanone was demonstrated by the shift of molecular ion in its mass spectrum. Based on these observations a new reaction mechanism, hydroxylation associated with 1,2-migration, is proposed for the oxidative rearrangement reaction catalyzed by the cytochrome P-450 enzyme of Pueraria lobata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.