Abstract

Dimethyl ether is classified as an alternative material that can be renewed and used for diesel engines, diesel fuel, and gas stoves as a household fuel. Dimethyl ether production was carried out by dehydration of methanol. The catalyst used in this process was dealuminated zeolite Y. This study aims to determine the effect of temperature on conversion, reaction rate constants, activation energy, and collision factor (A) in the synthesis of dimethyl ether. The reaction was carried out in a fixed bed catalytic reactor where the temperature was varied at 225-325 oC. The gas product was analysed by Gas Chromatography-Mass Spectrometry (GCMS), while the liquid product was analysed by High-Performance Liquid Chromatography (HPLC). The calculation of reaction kinetics was carried out using MATLAB. The results showed that the highest conversion was obtained at a reaction temperature of 225 oC which was 75.58 %. The reaction rate constant was obtained at 0.1795 l/mol.h with the activation energy and the collision factor values are 1.044 x 103 cal/mol and 0.0589, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.