Abstract

Poly(oxymethylene) dimethyl ethers (OME) are attractive oxygenated fuel additives and physical solvents for the absorption of carbon dioxide. This works studies the synthesis of OME from formaldehyde and methanol in aqueous solutions. The reaction kinetics of OME formation is studied experimentally in a stirred batch reactor on a laboratory scale using the heterogeneous catalyst Amberlyst 46. The influences of the ratio of formaldehyde to methanol, the amount of water, and the temperature (303.15–363.15 K) are investigated. A model of the reaction kinetics is developed that differentiates two competing reaction mechanisms. The model explicitly accounts for the intermediates poly(oxymethylene) hemiformals and poly(oxymethylene) glycols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.