Abstract
We report reactions of gas-phase free silver cluster cations, Agn+ (n = 3–18), with nitric oxide molecules, which was studied by kinetics measurements using an ion trap. AgnO(NO2)m−1+ and Agn(NO2)m+ were observed as major products after multiple reactions. The reaction pathway to form these product ions was identified by fitting the data to rate equations for n ≤ 15, except for inert n = 3 and 5. Two different reaction mechanisms were found for the formation of these products depending on cluster size; pseudo-first-order rate constants of each step of elementary reactions were obtained. First, as found for n = 4, 6, and 9, AgnO+ is formed by a reaction with two NO molecules, which is followed by a release of neutral N2O. A further reaction of AgnO+ with another NO molecule produces AgnNO2+. Agn(NO2)m+ (m ≥ 1) is thus successively formed via an intermediate, AgnO(NO2)m−1+. This is analogous to the reaction of NO on silver surfaces to produce NO2. Second, both AgnNO2+ and AgnO+ are formed concurrently, as found for n = 7, 8, 10, 11, 12, and 15; AgnO+ does not act as an intermediate for AgnNO2+. AgnO(NO2)m−1+ and Agn(NO2)m+ (m ≥ 2) are formed by successive addition of NO2 to AgnO+ and AgnNO2+, respectively. It is speculated that the successive addition of NO2 proceeds via disproportionation, i.e., three NO molecules are converted to NO2 and N2O. The reaction pathways of n = 13 and 14 are explained equally well by the two mechanisms. The overall reaction rate coefficients exhibit an odd–even alternation; the higher reactivity for even values of n is due to an odd number of valence electrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.